
 

HELPING ARTISTS CREATE DIGITAL MUSIC VIDEOS USING 
SPACETIME CONSTRAINTS 

 
 
 

A Thesis  
In TCC 402 

 
Presented to 

 
The Faculty of the 

School of Engineering and Applied Science 
University of Virginia 

 
In Partial Fulfillment 

 
of the Requirements for the Degree 

 
Bachelor of Science in Computer Science 

 
by 
 

John Middleton Rhoads 
 

March 25, 2002 
 
 
 
 
 
 

On my honor as a University student, on this assignment I have neither given nor 
received unauthorized aid as defined by the Honor Guidelines for Papers in TCC 
Courses. 
 
 

John Middleton Rhoads 
 
Approved __________________________________ Date____________ 
       Technical Advisor—Dave Brogan 
 

Approved______________________________________  Date______________ 
                    Technical Advisor—Bryan Pfaffenberger   



  ii

Preface 

 

As a double major in computer science and music my interest in this project is 

natural.  I am quite interested in using my skills as a computer scientist to aid 

musicians in any way possible, and this project is an attempt to create a tool that will 

do just that.  My secondary goal in taking on this project was to enable future students 

to more easily understand how to use spacetime constraints.  The literature that 

currently exists on the subject is either organized poorly, or does not give enough 

detail to allow a skilled programmer to implement a spacetime constraints system 

without an extended amount of outside research.  It is my goal to make this method 

accessible to more people in the hope that this powerful tool will be used more 

frequently. 

I’d like to take this opportunity to thank some of the people that made this 

project possible.  My TCC advisors, Bryan Pfaffenberger and Helen Benet-Goodman, 

were of great help with the writing and organization of this paper.  Jason Zeibel did a 

great job of explaining some of the tougher physics concepts to me.  I’d especially 

like to thank Dave Brogan, my technical advisor, for his help on the project.  This 

project is the result of a year’s worth of weekly meetings, and I really couldn’t have 

gotten as far as I did on this project without his help.



  iii

Table of Contents 

GLOSSARY OF TERMS.................................................................................................................................. iv 

VARIABLE TABLE ........................................................................................................................................ vi 

ABSTRACT .................................................................................................................................................viii 

1  CHAPTER ONE:  GENERATING DIGITAL ART.......................................................................................... 1 

1.1  The Performer Problem in Computer Music ........................................................................1 
1.2 Creating a Virtual Performer ...............................................................................................2 
     1.2.1  Physical Simulation Overview ......................................................................................3 
     1.2.2  Spacetime Constraints Overview ..................................................................................4 
1.3 Contents of Report ................................................................................................................5 

 
2  CHAPTER TWO:  PREVIOUS WORK IN SPACETIME CONSTRAINTS ....................................................... 6 

3  CHAPTER THREE:  SPACETIME CONSTRAINTS .................................................................................... 10 

3.1  Constrained Optimization Overview ..................................................................................10 
3.2  Sequential Quadratic Programming...................................................................................12 
     3.2.1  Overview of Method....................................................................................................12 

3.2.2  Application to Physics ................................................................................................16 
     3.2.3  Differences From Original Spacetime Constraints Paper .........................................20 
 

4  CHAPTER FOUR:  CREATING DIGITAL MUSIC VIDEOS FROM MUSICAL SCORES ............................... 22 

4.1 RTcmix .score File Description ..........................................................................................22 
4.2 Application of Constraints to System..................................................................................23 
 

CHAPTER FIVE:  CONCLUSION .................................................................................................................. 26 

5.1 Summary .............................................................................................................................26 
5.2 Interpretations ....................................................................................................................26 
5.3 Recommendations ................................................................................................................27 

 
WORKS CITED............................................................................................................................................. 29 

BIBLIOGRAPHY .......................................................................................................................................... 30 

APPENDIX.................................................................................................................................................... 31 

Code Listing:  ball_drop.cpp .....................................................................................................31 
Code Listing:  Matrix.h..............................................................................................................52 
Code Listing:  Matrix.cpp..........................................................................................................53 
Code Listing:  nrutil.h[8]...........................................................................................................59 
Code Listing:  nrutil.c[8]...........................................................................................................61 



  iv

Glossary of Terms 
 
Column Orthogonal Matrix – A matrix whose columns are linearly independent 

and whose lengths are one[8]. 

Column Vector –  A matrix consisting of just a single column. 

Constrained Optimization – The field of mathematics concerned with minimizing a 

function while still satisfying various restrictions. 

Degrees of Freedom – Any of the minimum number of coordinates required to 

specify completely the motion of a mechanical system[11].   

Diagonal Matrix – A square matrix in which all elements in the matrix that are not 

located on the diagonal are zero. 

Feasible Solution – The point in a constrained optimization problem at which all of 

the constraints are satisfied; a feasible solution may or may not be optimal. 

Finite Difference Formula – A means of approximating the derivative of a function 

by sampling it at different points in time. 

Null Space – Set of inputs for which a function maps to zero. 

Parse – To analyze or separate (input, for example) into more easily processed 

components[12].  

Physical Simulation – Creating animation by using a physical model of the objects 

in a virtual scene. 

Pseudo-Inverse (A+) – The psuedo-inverse of a matrix A is the matrix for which the 

following equality holds:  A A+ A = A 



  v

Sequential Quadratic Programming (SQP) – A method for solving constrained 

optimization problems in which the objective function can be any second order 

equation. 

Singular Matrix – A non-invertible matrix. 

Singular Value Decomposition – A method used to find the pseudo-inverse of a 

matrix.  It decomposes a matrix into the orthogonal matrices U and V and the 

diagonal matrix W.  The matrix A is equal to U W VT 

Solution Space – The set of possible solutions to a system of equations. 

Spacetime Constraints – A method used to apply constrained optimization to 

physically simulated computer animations.  

Virtual World – A description of a computer graphics environment.  



  vi

Table of Mathematical Variables 

 

Variable    Description 

R(S)     Objective Function(function to minimize) 

C(S)     Constraint Equations 

S Vector Containing all state variables(yi and fi 

for example problem) 

H Hessian Matrix(second derivative of objective 

function with respect to state variables) 

J Jacobian Matrix(first derivative of constraint 

function with respect to state variables…the 

rows map to the different constraint equations 

and the columns map to the different state 

variables 

A+     Pseudo-Inverse of the Matrix A 

U First orthogonal matrix in Singular Value 

Decomposition 

W Diagonal matrix in Singular Value 

Decomposition 

V Second orthogonal matrix in Singular Value 

Decomposition 

diag(1/wj) The diagonal matrix formed by inverting the 

diagonal elements in W 



  vii

S�
�R  Column vector containing the first derivative of 

the objective function with respect to each state 

variable 

^
S  Column vector containing the values to add to 

each respective element of the S vector in order 

to minimize the objective function after the first 

step of the SQP algorithm 

(
^
S  + 

~
S ) Column vector containing the values to add to 

each element of the S’ vector in order to satisfy 

the constraints after the second step of the SQP 

algorithm.   

S’ Column vector containing the intermediate S 

values obtained from the first step of the 

minimization algorithm(adding S + 
^
S ) 

Pi The ith physics constraint in the example 

problem 

h The time between samples(timesteps) of the 

physics constraints 



  viii

Abstract 

A common problem in computer music is that audiences are dissatisfied with 

sounds that are not performed.  Audiences are used to seeing music performed, and 

since computer music has no performer, it is missing this key element of a satisfying 

concert.  Computer musicians needs the tools to be able to add a visual component to 

their music. 

Spacetime constraints is a method that combines physical simulation of 

objects and constrained optimization to create realistic digital animations.  Physical 

simulation involves using principles from physics to determine where objects should 

be positioned in a scene, and constrained optimization is a field of mathematics that 

allows one to find a particular solution to a set of infinite equations based on some set 

of optimization criteria.   

Spacetime constraints can be used to solve the aforementioned performance 

problem in computer music.  Given a digital representation of a musical score, one 

can generate a digital animation that will appear to “play” the music specified by the 

score in a virtual (or computer animated) world.  Each note in the score can be 

represented as a physics constraint in a spacetime constraints system.  Using this 

information, a system can completely remove the technical problem of timing the 

animation to fit the music from the visual artists.  This prevents a great hindrance to 

the creative process that previously existed.  

While the project presented here is not yet fully functional, the content of this 

document should allow a researcher to fully implement a spacetime constraints 

system from scratch.  The system successfully implements Spacetime Constraints on 



  ix

a simple, one-dimensional example, but it still needs to be scaled to work in multiple 

dimensions for the project to work completely.



                                                                                                                                   

1 

Chapter 1:  Generating Digital Art 

  Perhaps the most significant obstacle to the effective creation of compelling 

digital art is that most artists lack the full technical knowledge necessary to 

successfully use the available technology.  Using Spacetime Constraints, a method 

developed by Andrew Witkin and Michael Kass, I have begun to develop a system 

that automatically generates digital music videos from musical score files[2].  This 

allows artists to use their talents without worrying about technical details. 

1.1   The Performer Problem in Computer Music 

One of the major dilemmas that composers of computer music face is that 

audiences are frequently unwilling to accept music without a performer.  When all of 

the sound is coming from a set of speakers with no visual cues to go with the music, 

it can lessen the effectiveness of a concert.  For this reason, computer musicians are 

frequently interested in combining their talents with visual artists to produce a 

multimedia work of art.   

Unfortunately, in the world of digital media, a number of obstacles prevent 

artists from fully utilizing the available technology to create their works.  Many 

musicians may lack the visual artistic skill to be able to produce interesting, 

multimedia works on their own, so collaboration is usually necessary to produce 

satisfactory results.  This doesn’t solve the problem though.  Lack of technical 

knowledge is the greatest impediment to the artist’s ability to get the most out of the 

digital medium.  Current work in digital media requires a combination of significant 

amounts of technical knowledge and artistic ability.  This hinders the creative talents 



  2

of those with a significant amount of artistic ability but virtually no technical 

knowledge.   

Computer scientists have made a number of efforts to help alleviate this 

dependence on technical knowledge.  Tools such as Maya, RenderMan, 

3DStudioMax, and RTcmix are designed to allow artists to ignore the technical 

details so that they can focus on the areas of their own expertise.  My system builds 

off of these previous tools to aid musicians and visual artists alike in attacking the 

performer problem.  

1.2 Creating a Virtual Performer 

 The product presented here is a step toward providing a general tool that 

multimedia artists can use to make digital music videos.  Given an RTcmix score file 

and a set of digital instruments and performers created with 3DStudioMax, my 

system, once fully functional, will be able to generate an animation that will show 

this set of virtual performers playing the predefined digital instruments.  The goal is 

to allow artists to work on visual and aural concerns without worrying about the 

timing issues involved in creating such an animation.  Specifically, the system will 

allow a user to specify a series of movable cannons and place them in the scene with 

the instruments.  These cannons will fire projectiles that will strike the instruments in 

the scene, appearing to play the music.  Based on the data in the score file, the 

system will determine where each cannon needs to be at any moment in time and 

when each cannon needs to fire in order to “play” the instruments scattered around 

the scene.  This idea of using cannons to perform music is inspired by the 2001 

SIGGRAPH movie Pipe Dream.[1]  The movie is based on a similar idea, but it is a 



  3

proprietary piece and does not create a general tool to assist artists in music 

visualization, as my project will do.  

1.2.1 Physical Simulation Overview 

Physical simulation is the idea that an animation can be generated by 

modeling the motion of all of the objects in the scene using physical principles.  The 

laws of kinematics are used to plot where every object in a scene will be at any given 

moment in time.  What this amounts to is a set of differential equations that model the 

motion of objects in the scene through time.  These differential equations will have an 

infinite number of possible solutions, which demonstrates that objects can move 

through a system in an infinite number of physically valid ways.  Typically, such 

systems will choose a solution for these equations by specifying a set of initial 

conditions, for example, initial velocity and position of an object.  This will narrow 

the solution space (the set of possible answers to the equations) of the equations from 

an infinite number to a single solution.  In this way, the particular way that the objects 

will move through the scene will be determined, and the values given in the solutions 

to the equations will specify the positions of the objects at any given time.  The 

advantage of this method is that it provides a means for producing realistic motion 

without requiring the animator to create said motion by hand.   

The problem with physical simulation is that it is difficult to control.  It is hard 

for an animator to know exactly how he should set the initial conditions for the 

system in order to achieve a desired result.  In the context of this system, if the 

animator wanted to make a cannon ball hit an instrument at a certain time it would be 

very difficult for the animator to know what initial conditions to use to create that 



  4

motion.  In 1988, Andrew Witkin and Michael Kass came up with spacetime 

constraints, an idea that would more intelligently choose which of the infinite 

solutions to the physical equations would be the best solution[2].   

1.2.2 Spacetime Constraints Overview 

Spacetime constraints is a powerful method that allows an animator a great 

deal of control over a physical simulation.  Since an infinite number of physically 

valid solutions exist, the trick is to pick which set of solutions to use in the animation.  

Suppose a programmer could add more restrictions on the motion than just the laws 

of physics, for example, requiring an object to be in a certain position at a certain 

time; one could continue to add limits like this to the system until there is only one 

possible solution remaining.  The above logic serves as the basis for spacetime 

constraints.  In fact, if there are not enough restrictions to place on the system, the 

animator can specify optimization criteria, such as minimizing the total force of the 

system, and the method will provide the answer.  The power of this method lies in the 

fact that one can now choose the “best” answer based on some set of defined criteria 

and not just any arbitrary answer. 

The system I built depends heavily on spacetime constraints.  A musical score 

is essentially a list of constraints of objects in a system.  “This note has to be played 

at this time.”  As such, the score itself provides the much needed restrictions to limit 

the physical possibilities of the system.  Since an RTcmix score file is text based, it is 

easy to integrate with a simulation system.  Add to this the notion of minimizing the 

force used by the cannons that will be striking the instruments, and it becomes clear 

that this method will solve all of the timing issues involved in solving the performer 



  5

problem in computer music.  An artist can take an RTcmix score file involving an 

arbitrary number of instruments and create a video from this without having to worry 

about any of the timing issues involved. 

1.3 Contents of Report 

The rest of this paper will describe the details of the system I have been 

working on.  Chapter two reviews previous work involving spacetime constraints 

and describes how my project fits into that paradigm.  Chapter three explains how 

spacetime constraints works and how one could go about implementing a spacetime 

constraints system.  Chapter four gives a detailed description of my specific 

application of spacetime constraints to the performer problem described above.  The 

final chapter describes the results and future possibilities of the system. 



  6

Chapter 2:         Previous Work In Spacetime Constraints 

Using physical simulation to drive computer animation is not a new field.  It is 

central to the idea of creating true virtual reality, and in principle removes the task of 

determining what “looks realistic” from the animator.  The idea of creating 

mathematical models of physical phenomena has been around since antiquity, and it 

was natural that computer scientists would try to apply physical principles to 

computer graphics.   

 Spacetime constraints arose to facilitate the idea of physical simulation.  The 

problem is that in a given complex system, there are generally an infinite number of 

physically possible things that could occur.  Physical models of different systems are 

usually obtained by solving a series of differential equations.  Consequently, there are 

an infinite number of physically possible motions that a system can have.  Before 

Spacetime constraints, a particular solution would be obtained by specifying the 

initial conditions of the system.  These would constrain the system to one possible set 

of equations.  However, spacetime constraints allow a user to specify a set of 

desirable goals for the animation (have an object be at a certain position at a certain 

time, minimize energy consumption, etc.) and then have the system determine how to 

achieve those goals in a physically realistic manner.  There are a number of different 

numerical methods that can achieve the desired constraints and optimization criteria.     

 In 1988, Andrew Witkin and Michael Kass introduced the idea of spacetime 

constraints in their paper of the same name[2].  Their hypothesis was that animations 

that adhere to strict physical principles will, by their very nature, look realistic.  The 

key aspects of standard animation practices could be reproduced by physical 



  7

principles.  They applied this idea to Pixar’s 1986 animation Luxo, Jr. which was 

possibly the most impressive computer animation at that time[3].  The film displayed 

a cartoon lamp “jumping” across the screen.  Witkin and Kass found that the 

traditional animation techniques used to make the Luxo, Jr. movie could be 

reproduced by a simple optimization of physical principles.  They used optimization 

criteria combined with physical principles to create a quite impressive animation of 

the jumping lamp.  By combining physics with mathematical constraints such as 

“jump to this point” and “minimize energy consumption,” they reproduced the most 

successful tricks of traditional animators.  Since their method involved using a 

physical model that was evaluated through both space and time, they called their 

method “spacetime constraints.”  Witkin and Welch later extended this idea to non-

rigid bodies[4] .  They make a basic non-rigid body model and then build “attachment 

constraints” to combine these different base elements together to form complex, non-

rigid bodies.   

 Spacetime constraints is an unusual research field, because it is not an idea 

with a number of potential improvements (the numerical methods used to solve the 

optimization problems inherent in the method have been around since before the 

beginning of computer graphics).  Therefore, the research in spacetime constraints 

lies in applying these methods intelligently to new computer graphics problems.  A 

discussion of some of the more significant applications is found below. 

Rose et al used this method to create a physical model of the human body in a 

variety of contexts[5].  This allowed for reasonable computation time for a simulation 

of a human body with 44 degrees of freedom (the number of coordinates needed to 



  8

fully specify the motion of an object).  One advantage of the spacetime constraints 

paradigm is that it not only chooses a solution from an infinite number of solution 

sets, it chooses one that is optimal or near optimal for some set of criteria.  This paper 

was an important proof of concept in that respect.   

Michael Gleicher used this method to adapt motion capture data to similarly 

proportioned bodies of different sizes[6].  He used motion capture data from a person 

walking and carrying a box, and used this data as constraints on the motion for other 

humanoids for whom motion capture data is not available.  He also applied this 

method to the morphing problem and successfully changed the size of a character 

walking as he moved.  

 Popovic et al. designed a dynamic interface for more intuitive control of 

physical simulation data[7].  They designed a system that allows a user to change 

certain aspects of the system, such as position or orientation, at any time during the 

simulation.  The system would then recalculate the motion in real time, to allow the 

user an intuitive interactive control.  This allows the user to specify the constraints for 

the motion rather than the programmer based constraints seen previously.   

 The project presented in this report is yet another instance of applying 

spacetime constraints to a new and interesting problem.  Once the system is fully 

functional, an artist will be able to create digital music videos from previous 

compositions without having a significant amount of technical knowledge.  

Spacetime constraints are fundamental to my system, because without spacetime 

constraints, the level of automation required to remove the dependence on technical 

knowledge from the artist would not be possible.  The next chapter describes in detail 



  9

how spacetime constraints uses constrained optimization methods to solve physical 

problems.   



  10

Chapter 3:        Spacetime Constraints 

In order to understand my system, it is important to understand exactly how 

spacetime constraints work.  This chapter details the theory behind the method and 

describes how the underlying theory is applied to physical principles. 

3.1 Constrained Optimization Overview 

Spacetime constraints is a specific application of the more general 

mathematical field of Constrained Optimization.  Constrained Optimization problems 

involve two main parts:  an objective function “R” and a series of constraint equations 

Ci.  The idea is to make the objective function as small as possible, while making sure 

that all of the constraint equations are satisfied.  There is generally the implied 

constraint that all variables have to be positive, to prevent trivial answers of negative 

infinity for any of the variables.  For example, consider the following equations: 

R(X1,X2) = X1 + 2X2     (1) 

C1 = X1 + X2 = 1    (2) 

C2 = X1 � 0     (3) 

C3 = X2 � 0     (4) 

In this case X2 would be equal to 0 and X1 would be equal to 1, because this is the 

minimum value that R can have.  Since constrained optimization problems generally 

involve many more than two variables, it is not common that such problems can be 

solved by inspection as we did with this simple problem.  There are a number of 

different numerical methods that allow us to find solutions to more complex problems 

than the one shown above.   



  11

 Typically, constrained optimization problems have many more variables than 

constraint functions.  In this case an infinite number of solutions will exist, so the 

algorithm uses the objective function to determine the best of the infinite number of 

solutions.  In the case where the number of linearly independent, constraint functions 

is equal to the number of variables, the constraint functions will specify a unique 

solution to the problem, and no minimization will occur.  Effective algorithms to 

solve these types of problems must be able to handle both of the cases outlined above.   

 The methods used to solve constrained optimization problems involve 

algorithms that involve using first and second derivatives of the objective and 

constraint functions to find the optimal solution.   

 
Figure 1:  Constrained Optimization Visualization (drawn by author) 

Figure 1 demonstrates a high-level view of what is going on in the typical algorithm.  

The system makes an initial guess for where the optimal solution will be.  It will then 

use derivative information to walk along the solution curve to find a locally optimal 

solution.  It is important to note that all these algorithms will do is find a locally 

optimal solution.  If the left side of the curve in figure 1 were to continue in the same 

direction towards negative infinity, the algorithm would not detect this, given its 



  12

initial guess.  Each successive step in constrained optimization algorithms will always 

be closer to a minimum than the preceding step.  As such, the algorithm will not be 

able to move up and to the left in figure 1 to arrive at the global minimum of negative 

infinity unless the initial guess is on this path.  

The way that many constrained optimization algorithms use this information 

is by constructing matrices of derivative information for the various curves involved.  

The algorithm makes an initial guess at the optimal solution without regard to the 

constraints.  It will then place this minimal solution on the curve by projecting the 

first guess onto the solution curve.  This gives a first guess, called a feasible solution, 

which is a valid, possibly non optimal, solution that satisfies the constraints.  The 

algorithms will then iterate through the two steps mentioned above using the matrix 

of derivative information; this effectively amounts to walking down along the 

solution curve until the algorithm reaches a local minimum.  How this is done is 

described in more detail in the next section. 

3.2 Sequential Quadratic Programming 

The particular method of constrained optimization that I use for my system is 

Sequential Quadratic Programming (SQP).  This section describes how SQP works in 

general and specifically how it can be applied to physics.  Alternative descriptions of 

the method can be found in [2] and [9].  The description given here is based loosely 

on the one give in [2]. 

3.2.1 Overview of Method 

Quadratic Programming is a subset of constrained optimization problems in 

which the objective function is an n variable quadratic function, and the constraint 



  13

functions are n variable linear equations.  In matrix notation the general form of the 

problem is: 

   R = (1/2) xT A x + B x   (5) 

   C = D x = e     (6) 

To facilitate discussion of this problem, we will use matrix notation and use the 

vector S to refer to all of the state variables used in the problem.  In order to solve this 

problem, we need to determine two matrices of derivative information:  The Hessian 

and the Jacobian.  The Hessian is a second derivative matrix that allows the 

minimization step of the algorithm.  The elements in the Hessian are given as: 

    
SS

RH
ji

ij
��

�
�

2

      (7) 

for 0 � i � n and 0 � j � n, where n is the number of state variables.  And the elements 

of the Jacobian are: 

        
S
CJ

j

i
ij

�

�
�      (8) 

  

for 0 � I � m and 0 � j � n, where n is the number of state variable and m is the 

number of constraint equations.  These two matrices form an integral part of the SQP 

algorithm.   

To solve the equations that constitute the SQP step (described below) we will 

need to know the inverses of the Hessian and Jacobian matrices.  However, since 

there are usually more variables than constraint equations, these matrices are both 



  14

likely to be singular (non-invertible) matrices.  Luckily, we can compute the “pseudo-

inverse” of these two matrices, and this will work just as well for our purposes.   

The pseudo-inverse of a matrix (A+) is the matrix that satisfies the following 

equations: 

   A = AA+A  and    (9) 

   A+ = A+AA+     (10) 

To obtain the pseudo-inverse of the Hessian and Jacobian, I use the Singular Value 

Decomposition algorithm found in Numerical Recipes in C [8].  This algorithm 

separates the matrix (A) into three matrices, U, W, and V such that the following 

equation is satisfied: 

    A = UWVT     (11) 

U and V are both column orthogonal matrices (meaning that each column of the 

matrix is linearly independent and has a length of 1), and W is a diagonal matrix (the 

only non-zero values are along the diagonal).  If the Matrix is square, the pseudo-

inverse is: 

    A+ = V * [diag (1/wj)] * UT   (12) 

If the matrix is not square, we can make it square by adding a row of zeros to the 

bottom until it becomes an N X N matrix.  The only problem is that if an element of 

the diagonal matrix W (wj) is 0, then 1/wj is undefined.  The algorithm actually works 

if you set 1/0 = 0 in this case [8].  Now that we know how to find the pseudo-inverses 

of the Hessian and Jacobian Matrices, we need to define a few more matrices before 

moving to the SQP step algorithm.  For convenience, let S be the N X 1 column 

vector representing all of the independent variables in the problem.  This vector can 



  15

be initialized to any possible values.  We will also need an N X 1 vector, 
S�

�R
, that 

will contain first derivative information for the objective function.  The algorithm will 

also require two temporary N X 1 column vectors 
^
S  and 

~
S  that store how much to 

alter S to obtain values for the next S in the algorithm.   

 The first part of the SQP algorithm involves minimizing R without 

considering the constraints.  Solving the equation: 

     
^
SH

S
��

�

�
�

R     (13) 

for 
^
S  will give an intermediate step that minimizes R without considering the 

constraints.  To obtain this intermediate value, simply add the values in 
^
S  to the 

values in S to form the new vector S’.  This vector will be used to obtain the values to 

the constraint equations C(S’) used in the next equation.   

 It is important to note that there is no mystery involved in this first step.  It is 

simply a Taylor series expansion.  The equation: 

f(x + x0) = f ’(x0) (x – x0)              (14) 

represents the first order Taylor series expansion.  If we let f(x) = 
S�

�R
 then  

f ‘(x) = 2

2

S�
� R .  By the above Taylor equation this gives that: 

         
^

2

2

0 0)( S
SS �

�
�

�

�
���

RRxxf    (15)  



  16

^
S simply represents the change (x – x0).  Since 2

2

S�
� R  is simply the Hessian matrix H 

that we’ve already defined, simply subtracting 
S�

�R
 from both sides of equation 15 

gives equation 13. 

From here, the algorithm solves the second equation: 

)()(
~^

' SSJSC ����     (16) 

for 
^
S  + 

~
S .  This step is projecting the result S +

^
S  from the optimization step 

(equation 13) onto the null space (set of values for which a function is equal to zero) 

of the constraint Jacobian [2].  In other words, it is altering the minimized value from 

the first step by just enough to satisfy the constraints.  The algorithm then sets S = S’ 

+ 
^
S  + 

~
S  and is now one step closer to an optimal solution.  The algorithm continues 

performing these two steps, using the previous S values to find the next, until 

decreasing R any further would violate the constraints.  The C vector used in the 

second equation is just the values from each of the constraints with respect to the 

values found in S’ from the first step.  When C(S) = 0, the constraints are satisfied.  

The algorithm terminates when decreasing R any further requires C(S) � 0.  In other 

words, at this point, any decrease in R requires the algorithm to violate one of the 

constraints. 

3.2.2 Application to Physics 

The key insight that Witkin and Kass presented in their spacetime constraints 

paper [2] is that the laws of physics can be treated as constraints in a constrained 

optimization problem.  In a physical system, one can make the total force in a system 



  17

the objective function, and the physical laws the constraints, in an SQP problem.  The 

advantage of this idea is that the algorithm will choose the physical system that 

minimizes the total force used in the system while still following the laws of physics.  

In addition, an arbitrary number of additional constraints can be added to give more 

control over the system.  A user can specify that certain objects be located in certain 

positions at certain times, and if there is a physically valid way to achieve these goals, 

the algorithm will find it.  To demonstrate more clearly how SQP works and how it 

can be applied to physical simulation, I will walk through a simple example.  This 

example is similar to the example presented in the Witkin and Kass paper, except it 

only considers one dimension for simplicity [2]. 

Consider a ball falling off of a building.  Suppose this ball were sentient and 

had a jetpack strapped to it that would allow it to slow its fall.  Now suppose the ball 

is dropped from a height of 10 meters at time 0 and wants to end up at a height of 5 

meters at time 2. This is an obviously ridiculous situation, but it illustrates how 

spacetime constraints works quite well.   

Assume that the jetpack exerts a force f(t) upward and that it is capable of 

producing as much force as it wants instantaneously at any time.  We want to 

minimize the force that it uses so we will declare our objective function to be: 

   R = f2(t)     (17) 

We square the force so that a force in either direction will still incur a positive cost in 

the objective function.  Using Newton’s second law of motion we know that the ball’s 

mass (m) times it’s acceleration (ÿ) is equal to the total force exerted on the system.   



  18

In other words: 

    mÿ = f - mg     (18) 

Since this calculation is going to be performed by a computer, we need to sample the 

functions y(t) and f(t) that represent the force and position of the ball through time.  

In other words, f(t) can be represented as a series of n discrete samples fi for 0 < i < n.  

A similar sampling will be done for y(t).  Since we have previously declared that S 

will contain all of the state variables needed for the problem, and these variables Sj 

will be the combination of the fi and the yi, we need to express the physics constraints 

in terms of these two variables.  To obtain the time derivatives of y(t) in terms of the 

yi we need to use the finite difference formula [2].  Let h represent the amount of time 

between samples (taken to be one in this example for simplicity).  These give that: 

    
h

YY
y ii �

�
�1

.
     (19) 

and    2
12

.. 2
h

YYY
y iii ��

�
��    (20) 

If we now take these values and plug them into equation 18 we will get n – 2 physics 

constraints specified by: 

           mgf
h

YYY
mP i

iii
i ��

��

�
��

2
12 2   (21) 

or: 

                                                    0
2

2
12

�

��

���
��

h
YYY

mmgfP iii
ii    (22) 

There are also two position constraints specified above that we have to take into 

account: 



  19

 

    Y0 = 10 and 

    Y2 = 5 

All that remains is to go through the setup of the Hessian and Jacobian and then solve 

the equations described above.  Assuming a sampling rate of 1 sample per second (an 

extremely impractical thing to do, but it is done here to illustrate the method) and 

assuming the indices for Sj are in the following order:  {y0, y1, y2, f0, f1, f2} gives the 

following Hessian:  

0 0 0 0 0 0   

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 2 0 0 

0 0 0 0 2 0 

0 0 0 0 0 2 

and Jacobian (with boundary constraints given last): 

-m/h2  2m/h2      -m/h2       0 1       0  

0 -m/h2      m/h2  0 0 1 

1 0      0          0 0 0 

0 0      1  0 0 0  

The second line in this Jacobian is the solution to a tricky implementation problem.  

Since we are using the finite difference formula to express acceleration (ÿ) in terms of 

position (y), we have to sample the positions two steps ahead of our current step in 

order to know the acceleration.  In our example, this means the physics constraint at 



  20

time 1 will be: 0
2

2
123

11 �

��

���

h
YYY

mmgfP .  However, there is no y3 in our 

example, since we only are looking at three time steps:  0, 1, and 2.  To handle this 

problem, simply set y3 = y2, which gives 02
12

11 �

��

���

h
YY

mmgfP . 

  The gradient vector needed in equation 13 is then: 

   
j

R
S�
�  = 2 * fj or 0 if Sj = yi 

The solution then comes from solving equations 13 and 16 using the pseudo-inverses 

of the Hessian and Jacobian described above for ^
S  and ~

S .  Then set the new  

S = S’ + 
^
S  + 

~
S  and repeatedly solve equations 13 and 16 until there is no 

improvement.  At this point, the S vector will contain the location of the ball at times 

0, 1, and 2 and how much force the jetpack will use at times 0, 1, and 2 in order to 

minimize the total force while following the constraints.  For more examples of how 

spacetime constraints work and how SQP can be used consult [2] and [9]. 

3.2.3 Difference from Original Spacetime Constraints Paper 

The above logic actually differs from Witkin and Kass in that there is a 

different treatment given of the finite difference formula.  Witkin and Kass give the 

finite difference formula as follows: 

h
YY

y ii 1
.

�

�

�  

and     2
11

.. 2
h

YYY
y iii ��

��

�  



  21

which are both perfectly valid ways to express the finite differences formulas.  The 

problem with this is that in physics, instantaneous velocity is defined as: 

h
YY

y ii �

�
�1

.
 

as I described in the previous section.  So while both descriptions are accurate 

depictions of the finite difference formula (algebra doesn’t care where you start the 

indexing), the Witkin and Kass example will result in a set of physics constraints that 

don’t make logical sense.  Using their description, one arrives at the following 

description of the physics constraints: 

0
2

2
11
�

��

���
��

h
YYY

mmgfP iii
ii  

This is again just the information I have given in the previous section with altered 

indexing.  However, this equation implies that applying a force at time I will result in 

a change in the position of an object at time i –1.  Since it does not make intuitive 

sense that a force applied in the present can effect the past, and since it is inconsistent 

with the description of instantaneous velocity given in physics texts, I decided that the 

indexing scheme I used makes more sense. 

 One other important difference between the Witkin and Kass paper and my 

own lies is that we have different sign representations.  I start from the equation  

mÿ = f – mg, and Witkin and Kass use the equation mÿ = f + mg.  They are both 

technically good representations of the physics involved, but I am just explicitly 

showing that gravity acts down on the object.  This is usually the way you see gravity 

dealt with in physics texts because constants, such as g, are generally considered 

positive.    



  22

Chapter 4: Creating Digital Music Videos From Musical Scores 

Now that we have a better understanding of spacetime constraints, we can 

examine how the method can be used to build the system that addresses the 

“performer problem” in computer music.  This chapter describes the syntax used in 

the RTcmix score files that will allow users to specify where objects are located in 

physical space.  It then details how spacetime constraints is applied to the system that 

will automatically generate the timing data used in the system. 

4.1 RTcmix .score File Description 

In order to talk about how the mapping between audio and visual instruments 

will work, one needs to understand a few basic RTcmix commands.  The basic design 

of a score in RTcmix involves loading an arbitrary number of instruments, and then 

calling functions with specific parameters that specify how the note will play.  For 

example the following could be the relevant structure of a typical score file: 

load( “FMINST”); 

….. 

FMINST($start, $dur, $amp, $freq, $mod_freq, $spread); 

The FMINST call specifies that RTcmix should play a note using FM synthesis.  (A 

common computer music technique that is not really relevant to this discussion, for 

more information consult [10]).  The parameters to the function specify key 

information about the note such as the time the note should sound, its duration, its 

pitch, and its amplitude.  This brings us to how virtual instruments can be specified in 

a score file.  The function “make_virtual_inst(…)” allows the user to specify where 

the instrument will be located in the virtual world.  The statement shown below can 



  23

be inserted after the load(Instrument Name) call to associate that instrument with the 

given sound: 

 make_virtual_inst(“FMINST”,-1,-1,1.0, 1.0, 1.0); 

This call specifies that for all notes of type “FMINST” that instrument is located at 

position 1,1,1 in the virtual world.  The –1 flags say that all instances of “FMINST” 

are located at that position.  If the call looked like: 

 make_virtual_inst(“FMINST”, 3, 440, 1.0, 1.0, 1.0); 

then this call would say that whenever the third parameter of FMINST (in this case 

$freq) is equal to 440 (which specifies the A above middle C) the location of that note 

is 1,1,1 in the virtual world.  This allows the user to specify the exact location of 

different notes on an instrument.  For example, if the virtual instrument were a piano, 

each of the keys would be located in different positions, so the user would want to 

specify different locations for each key.  Luckily, when the animator is creating the 

visual representation of the instrument, the computer graphics program he is using 

will usually involve placing objects at different coordinates in space.  This 

information can just be taken from the animation and put in the score file, so there is 

no real work associated with setting up the locations of the virtual instruments. 

4.2 Application of Constraints to System 

The idea is to have the system play the virtual instruments specified above 

through the use of movable cannons.  These cannons can translate and rotate along a 

track in the virtual world, and they will fire balls at the appropriate times to play the 

notes specified by the score file.  The fact that there will be fewer ball launchers than 

notes on the instruments will necessitate the use of the optimization power of 



  24

spacetime constraints.  Since there will not be enough launchers to play every note 

without moving, the cannons will have to move along their tracks at appropriate times 

to take care of playing all of the notes.  If there was no notion of minimizing the force 

these cannons use to achieve this motion, then there would be a great deal of 

extraneous motion along the tracks which would look illogical to the person watching 

the animation. 

The system fits quite well into the spacetime constraints paradigm.  Since 

RTcmix scores contain start time information for each note, each note will know at 

exactly what time it should sound.  Or, more usefully, this contains the information 

for exactly when and where a ball should strike a certain virtual instrument to play in 

synch with the music.  The laws of physics and the score file itself therefore contain 

all of the information needed to produce a convincing animation. 

So we now know that the system can conceptually handle all of the timing 

issues necessary to create the animation.  The question now is how does the system 

actually use this data to create the animation.  The system begins with the 

specification of virtual instruments in the score file.  The spacetime constraints 

system will then parse (read and understand) the file, and run the SQP algorithm to 

determine where each object should be located.  The position data for each object in 

the animation will be contained as position variables in the S vector, which is the 

ultimate result of the SQP step.  This position data can then be used by the computer 

graphics program to specify where each object in the virtual world should be at each 

point in time.  And the result, a digital music video that appears to “play” the music 

specified in the score file.  The “performance problem” in computer music can be 



  25

solved without the artists involved having too great a dependence on technical 

knowledge. 

 



  26

Chapter 5: Conclusion 

Now that I have given a complete description of the system as it stands, this 

chapter summarizes the ideas of the system, interprets the results, and gives 

recommendations for the future of the project. 

5.1 Summary 

Once completed, the system presented here will allow artists to create digital 

music videos without worrying about technical details.  The system uses Spacetime 

Constraints to remove all of the timing issues involved in making the movie.  Notes 

in a score file represent position constraints for the objects that “play” the virtual 

instruments.  Minimizing the total force used by the various cannons used to play the 

music will produce a visually satisfying result once the system is fully functional.  

The main challenge remaining is to simply scale the problem to three dimensions, 

and use this information to implement the system to automatically generate the 

timing information needed to play the instruments in the virtual world. 

5.2 Interpretation 

Even though the system does not currently work, I am confident that it will be 

functional within the next few weeks.  It is my hope that, if nothing else, the 

presentation of spacetime constraints presented in chapter three will be easy to read 

and understand by future computer science researchers.  I feel that spacetime 

constraints is a very powerful tool that is currently underused in animation.  One 

possible reason for this problem is that it is a very difficult method to implement.  My 

hope is that the presentation of the method in this report will clear up some of the 



  27

confusion and ambiguity that exists in some of the earlier spacetime constraints 

papers. 

Naturally it is my hope that artists will be interested in using this system.  One 

possible criticism of this project is that the application is too narrow.  The system will 

produce compelling visualization of musical pieces with a lot rhythmic complexity, 

but more subtle aspects of music that computer musicians like to explore will not 

really be captured by the visuals of this system.  It is also limited by its dependence 

on percussive instruments.  In addition it still involves collaboration between visual 

and aural artists, which can frequently be hard to manage.  However, I believe that 

once the system is working, it will have significant practical use for today’s artists.   

5.3 Recommendations 

Clearly the most obvious shortcoming of this project is that it is not yet fully 

functional.  As mentioned above, the SQP algorithm is working well, i.e. the system 

will minimize the objective function and still satisfy the constraints given.  However, 

the description of the physics of the system is not quite rigorous enough.  Although 

the equations given to the system are satisfied, the answer that the SQP system 

produces is not physically accurate.  Describing the physics of the system accurately 

is therefore a top priority.   

There are several other tasks that could be done to make the system more 

useful for artists.  Ideally, interested programmers could add plugins to 3D Studio 

Max, Maya, and Renderman that would take the data specified by the system and map 

these numbers to specific objects in the 3D world.  Having an easy-to-use system 

associated with these popular rendering tools should make the system much easier to 



  28

use than it will be initially.  A graphical interface for mapping the relationships 

between musical events and events in the virtual world would also make the system 

much easier to use.  Currently RTcmix developers are working on graphical user 

interfaces for RTcmix, so an ultimate goal could be to integrate RTcmix with one of 

the graphical programs listed above to make the system that much easier to use.   

Another interesting addition that researchers could look into would be 

extending the system to include more complex physical models than simply balls 

moving around in the scene.  The physical objects modeled in this system can be 

arbitrarily complex.  Integrating the system with a general purpose physics library 

could make the imagination of the artist the only limitation on the kinds of innovative 

animations they can create.  This is the ultimate goal of a project of this type, so 

ideally a future researcher will be interested in tackling this problem.  The potential 

for future work in this area is really quite extensive and hopefully other researchers 

will be as interested in this subject as I am.  



  29

Works Cited 

[1]   Wayne Lytle.  Pipe Dream.  2001.  film. 
 

[2]        Andrew Witkin and Michael Kass.  Spacetime Constraints. Proc. 
SIGGRAPH,1988. 

 
[3] Pixar.  Luxo, Jr., 1986.  film. 
 
[4]       Andrew Witkin and William Welch.  Fast Animation and Control of Nonrigid 

Structures.  Proc.  SIGGRAPH, 1990.   
 
[5]       Charles Rose, Brian Guenter, Bobby Bodenheimer, and Michael Cohen.  

Efficient Generation of Motion Transitions Using Spacetime 
Constraints.  Proc.  SIGGRAPH, pages 147-154, 1996. 

 
[6]       Michael Gleicher.  Retargeting motion to new characters.  Proc.  25th annual        

conference on computer graphics, pages 33-42, 1998. 
 
[7]       Jovan Popovic, Steven M. Seitz, Michael Erdmann, Zoran Popovic, and 

Andrew Witkin.  Interactive manipulation of rigid body simulations.  
Proc. conference on Computer graphics, Pages 209 – 217, 2000. 

 
[8]       William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. 

Flannery.  Numerical Recipes in C:  The Art of Scientific Computing.  
Cambridge University Press.  1988-1992. 

 
[9]       Roger Fletcher.  Practical Methods of Optimization.  Second Edition.  John 

Wiley & Sons.  2000. 
 
[10]      Charles Dodge and Thomas A. Jerse.  Computer Music:  Synthesis, 

Composition, and Performance.  Second Edition.  Schirmer 
publishing.  1997.   

 
[11]      Dictionary.com.  April 23, 2002.  Lexico, LLC.  

http://www.dictionary.com/search?q=degrees%20of%20freedom 
 
[12]      Dictionary.com.  April 23, 2002.  Lexico, LLC.  

http://www.dictionary.com/search?q=parse 



  30

Bibliography 

Dictionary.com.  April 23, 2002.  Lexico, LLC.   
 
Dodge, Charles and Jerse, Thomas A..  Computer Music:  Synthesis, Composition, 

and Performance.  Second Edition.  Schirmer Publishing.  1997.   
 
Fletcher, Roger.  Practical Methods of Optimization.  Second Edition.  John Wiley & 

Sons.  2000. 
 
Gleicher, Michael.  Retargeting motion to new characters.  Proc.  25th annual        

conference on computer graphics, pages 33-42, 1998. 
 
Hecker, Chris.  “Physics, The Next Frontier.”  Game Developer.  November 1996. 
 
Lunn, Mary.  A First Course in Mechanics.  Oxford University Press.  1991. 
 
Lytle, Wayne.  Pipe Dream.  2001.  film. 
 
Pixar.  Luxo, Jr., 1986.  film. 
 
Popovic, Jovan, Seitz, Steven M., Erdmann, Michael, Popovic, Zoran, and Witkin, 

Andrew.  Interactive manipulation of rigid body simulations.  Proc. 
conference on Computer graphics, Pages 209 – 217, 2000. 

 
Press, William H., Teukolsky, Saul A., Vetterling, William T., Flannery, Brian P..  

Numerical Recipes in C:  The Art of Scientific Computing.  Cambridge 
University Press.  1988-1992. 

 
Rose, Charles, Guenter, Brian, Bodenheimer, Bobby, and Cohen, Michael.  Efficient 

Generation of Motion Transitions Using Spacetime Constraints.  Proc.  
SIGGRAPH, pages 147-154, 1996. 

 
Winzell, Par.  An Implementation of the Spacetime Constraints Approach to the 

Synthesis of Realistic Motion.  Master’s Thesis. Linköping Institute of 
Technology, Sweden.  1998. 

 
Witkin, Andrew and Baraff, David.  Differential Equation Basics.  Carnegie Mellon 

University.  1997. 
 
Witkin, Andrew and Kass, Michael.  Spacetime Constraints. Proc. SIGGRAPH,1988. 
 
Witkin, Andrew and Welch, William.  Fast Animation and Control of Nonrigid 

Structures.  Proc.  SIGGRAPH, 1990.   
 
  


